Word Embeddings

(Pre-Transformers)

Dan Salo
October 27th, 2021

Fill In the Blank

1. “If don’t leave now, I'll be late for
2. “If I don’t leave now, I'll be late for . Tacos are my favorite”
3. ‘“lIf I don’t leave now, I'll be late for . Tacos are my favorite midday meal.”

“If | don’t leave now, I'll be late for lunch. Tacos are my favorite midday meal.”

1. “Here comes the)
2. “Here comes the , and | say, ‘It's all right.”

“Here comes the sun, and | say, ‘It's all right™

Fill In the Blank -- Reflections

e Context is King! The first blank was iteratively further constrained with more
context.

e The Distributional Hypothesis (1954) states that words with similar
meanings tend to occur in similar contexts. “You shall know a word by the
company it keeps.”

e Transfer learning in action: bringing knowledge from a different domain
(i.e. the Beatles) to improve performance on a specific task (i.e. fill in the
blank).

https://www.tandfonline.com/doi/pdf/10.1080/00437956.1954.11659520

Motivation

Word Embeddings are vectorized representations of words.
What properties are desirable?

e Fastto produce
e Dense vectors encoded with semantic meaning
e Simple to use in downstream tasks

NLP 101

Tokenization 101

“Mr. O'Neill thinks that the boys' stories about Chile's capital aren't amusing.”

Q: How can we subdivide this text so its context can be compared to other contexts?
A: Tokenization is the process of splitting text into tokens, a useful semantic unit.

Basic tokenization is rules-based:

neill aren’t

= 5, spaCy

NLTK

g NLP 101 https://nlp.stanford.edu/IR-book/html/htmledition/tokenization-1.html

N-Grams 101

What's a “gram”™? A character, token,

syllable, etc.
o) N = 1 :[This|is|allsentence| unigrams: 3
1 . Unlgram sejnt-ence
2. “Bigram” N = 2 :[This|is|a|sentence| bigrams: ;hs:tece
3. “Trigram” — -
N = 3 :[This|is a|sentence|rigrams: 1552, .

4. “4-gram’
The power of N-Grams: N-Grams “chunk” text

e Count up the occurrence of n-grams for
an estimate of language probability
. “iS a”

N L P 1@1 https://www.cbrinton.net/ECE20875-2020-Spring/W1@/ngrams.pdf
= https://lena-voita.github.io/nlp_course/language_modeling.html#markov_property

Language Modeling 101

Example: “If | don’t leave now, I'll be late for
Q: What's the relative probability of the blank being filled with class vs lunch?

(class | If I don’t leave now, I'll be late for) =
class | for) * p(for | late) * p(late | be) * ... p(l | If)

Y
P
Y
P

p(wl, ek ,’lUT) = Hp(wi | Wi—1,° " awi7n+1)

lunch | If I don’t leave now, I'll be late for) =
lunch | for) * p(for | late) * p(late | be) * ... p(l | If)

https://www.cbrinton.net/ECE20875-2020-Spring/W10/ngrams.pdf
e 100

https://lena-voita.github.io/nlp_course/language_modeling.html#markov_property

Bag of Words Vectorization

e One-hot encoding: corpus vocabulary-length
vector of all 0’'s except one [0,0,0,1,0,0,0,0,...0]

e Term-Doc matrix: Binary vector of documents in
which the word appears

Characteristics
e Simple, intuitive, fast
e Local context is not preserved
e All terms weighted equally
e Sparse, vocabulary-length vectors

B NLP 101

‘ E sklearn.feature_exracation.text.CountVectorizer

Example of text data: Titles of Some Technical Memos

cl: Human machine interface for ABC computer applications

c2: A survey of user opinion of computer system response time

c3: The EPS user interface management system

c4: System and human system engineering testing of EPS

c5: Relation of user perceived response time to error measurement

ml: The generation of random, binary, ordered trees

m2: The intersection graph of paths in trees

m3: Graph minors IV: Widths of trees and well-quasi-ordering

m4: Graph minors: A survey —

cl ¢c2 ¢3 ¢4 ¢5 ml m2 m3 m4
| human 1 0 o0 I o0 O O 0 0 |

interface 1 0 1 0 0 O 0 0 0
computer 1 1 0 0 0 0 0 0 0
user 0 1 1 0 1 0 0 0 0
system 0 1 1 2 0 0 0 0 0
response 0 1 0 0 1 0 0 0 0
time 0 1 0 0 1 0 0 0 0
EPS 0 0 1 1 0 0 0 0 0
survey 0 1 0 0 0 0 0 0 1
trees 0 0 0 o 0 1 1 1 0
graph 0 O 0 0 0 0 1 1 1
minors 0 0 0O O O O 0 1 1 |

https://people.eng.unimelb.edu.au/mbouadjenek/papers/wordembed.pdf

Co-Occurrence Vectorization

The Counts matrix calculates the co-occurence of words

within the context window, e.g. the document or sentence.

Characteristics

Simple, intuitive, fast

Local context is partially preserved
All terms weighted equally
Sparse, vocabulary-length vectors

B NLP 101

1. I enjoy flying.
2. Ilike NLP.

3. Ilike deep learning.

like enjoy deep learning NLP flying
1 2 1 0 0 0 0
like

enjoy

learning

NLP

1

0

2

1

deep 0
0

0
flying 0
0

O M= = = O O O O -

OO RO MO O
o R OO0 OO O
C OO = OO M
=== e N)
-0 O O O O =
-0 O © O = O

https://people.eng.unimelb.edu.au/mbouadjenek/papers/wordembed.pdf

Naive Vectorization

Drawbacks

e Large and sparse vectors
e Poor use of contextual information within corpus

Desired

e Compact and dense vectors
e Better use of contextual information with corpus

Word Embedding Evolution

1988
2013
2014
2018

Latent Semantic Analysis: term-weight based model
Word2Vec: prediction model

GLoVe: counts model

ELMo: language model-based

(
(
(
(

N’ N N N’

Latent Semantic Analysis

Deerwester, Scott, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard Harshman.
"Indexing by latent semantic analysis."
Journal of the American Society for Information Science 41, no. 6 (1990): 391-407.

TF-IDF

Characteristics

A re-weighting of the term-doc matrix
As term frequency increases and

Strength(s)

e Upweights unique terms in a document

e Common usage in open-source search engines
(Elasticsearch)

Drawback(s)

e Contextual nature of vectorization dilutes as
document length increases

e \Weightings are corpus-dependent

e Sparse, vocabulary-length vectors

‘ E sklearn.feature_exracation.text.TfidfVectorizer

N
w, ,=tf, xlog (d—fx)

tf, , =frequency of xiny
df, = number of documents containing x
Term x within documenty N = total number of documents

The Equation

idf(s, D)

blue bright can see shining sky sun today

2 0 1/3 0 0 0 0 13 1/3 0.602 0.125 0.602 0.602 0.602 0.3010.125 0.602

3 0 13 0 0 0 173 113 0

t£id£(t,d, D) = t£(t,d) - id£(t, D)

blue bright can see shining sky sun today

0301 O 0 0 0 0151 0 0

0 0.0417 0 0 0 0 0.0417 0.201

0 0.0417 0 0 0 0.100 0.0417 0

N

0 0.0209 0.100 0.100 0.100 0 0.0417 0

An Example Vectorization

https://ted-mei.medium.com/demystify-tf-idf-in-indexing-and-ranking-5c3ae88c3fa0
https://sci2lab.github.io/ml_tutorial/tfidf/

cl ¢2 ¢3 ¢4 ¢5 ml m2 m3 m4
| human 1 0 o0 I 0 0 o0 0 0 |
interface 1 0 1 0 0 0 0 0 0
- - computer 1 1 o 0 O O O o0 o
Latent Semantic Analysis e 0 1 1 0 10 0 0 0
system 0 1 1 2 0O o0 0o 0 0
response 0 1 0 0 1 0 0 0 0
time 0 1 0 0 1 0 0 0 0
EPS 0 0 1 1 0 0 0 0 0
icti 0 1 0 0 0 0 0 0 1
Characteristics Y o0 % ot 81 191E
graph 0 O 0 0 0 O 1 1 1
. . . . i 0 0 0 0 0 0 1 1
e Applies SVD to the term-doc matrix (or tf-idf matrix) — i !
U are doc latent factors, V are term latent factors (i.e. J L
word vectors) JDE
e Word vectors “borrow” information from other SVD w-U z
documents in which word is not present mn - mem i
Clarifications
cl c2 c3 c4 c5 ml m2 m3 m4
| human 0.16 0.40 0.38 0.47 0.18 -0.05 -0.12 -0.16 -0.09 |
. . . . interface 0.14 0.37 0.33 0.40 0.16 -0.03 -0.07 -0.10 -0.04
e SVD assumes a Gaussian distribution of terms o T S S 7 o 1
9y * system 045 1,23 1.05 1.27 0.56 -0.07 -0.15 -0.21 -0.05
L Factors arentlnterpretable rponso 016 058 038 042 028 006 043 019 0
time A 4 g E 5 J s « 5
e Adding new documents / terms requires recomputation ey, 015 633 03 031 037 0w 03 0as o4
trees -0.06 0.23 -0.14 -0.27 0.14 0.24 0.55 0.77 0.66
graph -0.06 0.34 -0.15 -0.30 0.20 0.31 0.69 0.98 0.85
| minors -0.04 0.25 -0.10 -0.21 0.15 0.22 0.50 0.71 062 |

Rank 2 approximation of term-doc matrix

. *
Hlm.nllln.,,_ Fr\equency Te(:hnlques (UTZTVT) http://1lsa.colorado.edu/papers/dpl.LSAintro.pdf

LSA Embeddings

Achievements over Naive

e Not long or sparse vectors
e Better use of contextual information within corpus

Drawbacks

e SVD is prohibitively expensive with large matrices
though optimizations are available (See Brian’s Netflix talk)

Desired

e Faster method for contextual, dense word vectors

https://nlp.stanford.edu/IR-book/html/htmledition/latent-semantic-indexing-1.html

Word2Vec

T Mikolov, | Sutskever, K Chen, GS Corrado, J Dean. Distributed representations of words and phrases and their
compositionality. NIPS 2013.
https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1310.4546.pdf

Neural Language Models

A Neural Probabilistic Language Model, Bengio et al, 2003

The approach pursues language modeling and produces
word vectors as a by-product:

1. associate with each word in the vocabulary a distributed word feature vector (a real-
valued vector in R™),

2. express the joint probability function of word sequences in terms of the feature vectors
of these words in the sequence, and

3. learn simultaneously the word feature vectors and the parameters of that probability
function.

Thou shalt
What's the probability of the next
word being “not”?

https://jalammar.github.io/illustrated-word2vec/
https://www.jmlr.org/papers/volume3/bengio@3a/bengio@3a.pdf

Neural Language Models

nput/fez output/label

Thou shalt

LM Task: Predict Next Word
i.e. Fill in the blank

P(’wl, e ,’CUT) _ Hp(wi | Wi—1,° ")wi—n+1)

Input Output

Features Prediction

0% | aardvark

0% | aarhus

Thou — Trained Language Model 0.1% | aaron

Task:
shalt > Predict the next word

40% not

0.01 | zyzzyva

LM Model and Prediction

[nput Trained Language Model OUtpUt

Features Task: Prediction

Predict the next word

1) Look up

embeddings 0 | aardvark
aardvark 0 aarhus
i I o 0001 aaron
hot
. s shalt —
na shalt —paaa 2
—thou 044 not
zyzzyva
k J 0.0001| zyzzyva

Word Embeddings!

INPUT PROJECTION OUTPUT

Word2Vec

w(t-1)
SUM

Improves upon Bengio’s 2003 model by:

R w(t)

\//

e Removing hidden neural network layer and non-linearities (tanh)

w(t+1)

e Introduces hierarchical sampling and negative sampling for CBOW
approximation of softmax at Output o
CBOW model:

e The distributed representations of context are combined to predict the
word in the middle INPUT PROJECTION OUTPUT
e Produces vectors cluster by syntax (e.g. “cat” and “cats”)

w(t-2)
Skip-gram model: / »
e The distributed representation of the input word is used to predict the @ /

context \
e Produces vectors clustered by semantics (e.g. “cat” and “dog”) W)
Skip-Gram

w(t+2)

S kl p- G ra m B aS I CS [Thou shalt not make a]'nachine in the likeness of a human mind

thou = shalt not & machine in | the | ... input word | target word
not thou
Data not ~ shalt |
L. . not make |
e The training samples are easily ot [
extracted from the corpus. Data
e Sliding window default is 5
Actual Model Erro
Trai n i n g Target Prediction PR

e Calculate softmax over sampled : oon aaron om
Vocabulary . 0 o _. l,;,' taco -0.4

e Backprop the error to update the -
model params (i.e. word vectors) Model

Parameters

0.0001 | zyzzyva -0.0001

Training

Word2Vec Embeddings

Achievements over LSA

e Faster algorithms
e Denser vectors

Drawbacks

e Only includes local, windowed context during training and misses out on
global occurrence statistics

Desired

e Incorporation of global occurrence information as well

GLoVe

J Pennington, R Socher, C Manning.
GLoVe: Global Vectors for Word Representation.
ENMLP 2014.
https://nlp.stanford.edu/pubs/glove.pdf

GLoVe

Characteristics

e GLoVe = GLobal Vectors

e Applies Matrix Factorization to the co-occurrence
matrix

e Generates two sets of word vectors differing by
initialization
(Authors average them to produce final vector set)

Intuition

e The dot product of two word vectors should be
proportional to their co-occurrence count.

e Dot product of orthogonal vectors = 0
The vectors of words that do not co-occur
should be orthogonal

M words K latent dim N words

——
X VT

N docs A ~ U

LSA: SVD on Term-Doc Matrix

N words K latent dim N words

K latent 7.
dim { W]

N words log Xi,j ~ W;r

GLoVe: MF on Counts Matrix

J = Z f(Xij) W{Wj +bi+l;j —IOgX,'J)2

https://nlp.stanford.edu/pubs/glove.pdf

GLoVe vs Word2Vec vs LSA

LSA:

e Vector space does not support analogies
e Weighs all co-occurrences equally
e Better semantics on small datasets’

GLoVe and Skip-Gram Word2Vec:

e Similar performance on analogies
e Are interchangeable in many tasks

Male-Female

Verb Tense

¢ S

Hanoi

Beijing

Country-Capital

Quantifiable Analogies

a af 9ay (1900s)

flaunting sweet; il
tasteful cHeerL)

pleasant
frolicsomye

witty Y gay (1950s)
bright

gays isexual

gay (1990s) OMOsexual
lesbian

spread

broadcast (1850s). (,s(,of}N

S
circulated scatter

broadcast (1900s)
newspapers
television
radio

hhc broadcast (1990s)

OWS

(o] solemn
awful (1850s)
majestic
awe
dread gensive
gloomy

horrible

appalliwg terrible
awful (1900s)
wonderful
awful (1990s)

awfullyyeird

Nearest Neighbors On Different

Historical Corpa

https://nlp.stanford.edu/projects/histwords
*https://arxiv.org/abs/1610.01520

Others

Sense2Vec: incorporate POS and NER information into word vectors (“bat - NOUN”)
Doc2Vec: Word2Vec applied to documents instead of words
fastText: sets out to learn same LM Task but with key differences from word2vec

e Learns vectors for character n-grams and sums to produce word vectors
e Reframes expensive softmax as a binary classification problem. Faster!

Untrained Model not R Untrained Model
not —» — thou ‘ — 0.90

Task: h Task:
Predict neighbouring word thou ’ Are the two words neighbours?

https://arxiv.org/abs/1405.4053

https://arxiv.org/abs/1511.06388
https://arxiv.org/abs/1607.04606

https://arxiv.org/abs/1405.4053
https://arxiv.org/abs/1511.06388

GLoVe/Word2Vec Embeddings

Achievements I can’t trust you.

e Faster algorithms
e Denser vectors
e Use global/local contextual information

They have no trust left for their friend.
He has a trust fund.
Drawbacks
e \Word vectors become overloaded with its various senses
Desired

e Disambiguate word sense on runtime context!

ELMo

M Peters, et al.
Deep contextualized word representations
NAACL 2018.
https://arxiv.org/abs/1802.05365

Recurrent Neural Networks for Language Modeling

[output/label

Thou shalt

LM Task: Predict Next Word
i.e. Fill in the blank

P(’wl, e ,’CUT) _ Hp(wi | Wi—1,° " awi—n—l—l)

Output
Layer

LSTM
Layer #2

LSTM
Layer #1

Embedding

0.1% | Aardvark

Possible classes: |
All English words 10% Improvisation

0% | Zyzzyva

[FFNN + Softmax]

X a
Xad

(o

[[= LI L]

Let's

T

L

stick

https://jalammar.github.io/illustrated-bert/

Bidirectional LSTM

e Views forward and backward context
e Also referred to as biLM in the paper ﬁ EEEa—
(bidirectional Language Model)

Enhance inputs i -f‘
1‘7 h ELMos ——__|
N .
Exiigres - ytT_l ”T y‘T“ - bivs EEEEDY BN
Backward Layer <«—— (Et:} 4’?: > (Et+1 Usual inputs have a nice
x
Forward Layer T{ _ > 'ﬁ > T{ —> .
i ‘ \ L. Training and Knowledge
T T T Incorporation
Inputs ce Tt-1 Tt Tt41

https://paperswithcode.com/method/elmo

ELMo Takeaways

1. Encode corpus information in a model rather than in dense vectors

2. Use model to compute vectors at runtime
3. Incorporate vectors into downstream model

But...
What if we could use the information-laden model as the model itself for the task?

Eliminate the downstream model and fine-tune (like an ImageNet model).

Highlighted References

Word2Vec / fastText:

e Pretty pictures: https://jalammar.github.io/illustrated-word2vec/
e Alittle math: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
e More math: https://ruder.io/word-embeddings-1/index.html

Word Embeddings:

e Overview: https://rbouadjenek.qithub.io/papers/wordembed v2.0.pdf

https://jalammar.github.io/illustrated-word2vec/
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
https://ruder.io/word-embeddings-1/index.html
https://rbouadjenek.github.io/papers/wordembed_v2.0.pdf

