
Word Embeddings
(Pre-Transformers)

Dan Salo
October 27th, 2021



Fill In the Blank

1. “If I don’t leave now, I’ll be late for ____.”
2. “If I don’t leave now, I’ll be late for ____. Tacos are my favorite”
3. “If I don’t leave now, I’ll be late for ____. Tacos are my favorite midday meal.”

“If I don’t leave now, I’ll be late for lunch. Tacos are my favorite midday meal.”

1. “Here comes the ____”
2. “Here comes the ____, and I say, ‘It’s all right.’”

“Here comes the sun, and I say, ‘It’s all right’”



Fill In the Blank -- Reflections

● Context is King! The first blank was iteratively further constrained with more 
context.

● The Distributional Hypothesis (1954) states that words with similar 
meanings tend to occur in similar contexts. “You shall know a word by the 
company it keeps.”

● Transfer learning in action: bringing knowledge from a different domain
(i.e. the Beatles) to improve performance on a specific task (i.e. fill in the 
blank).

https://www.tandfonline.com/doi/pdf/10.1080/00437956.1954.11659520



Motivation

Word Embeddings are vectorized representations of words.

What properties are desirable?

● Fast to produce
● Dense vectors encoded with semantic meaning
● Simple to use in downstream tasks



NLP 101



Tokenization 101

“Mr. O'Neill thinks that the boys' stories about Chile's capital aren't amusing.”

Q: How can we subdivide this text so its context can be compared to other contexts?
A: Tokenization is the process of splitting text into tokens, a useful semantic unit.

Basic tokenization is rules-based:

https://nlp.stanford.edu/IR-book/html/htmledition/tokenization-1.htmlNLP 101



What’s a “gram”? A character, token, 
syllable, etc.

1. “Unigram”
2. “Bigram”
3. “Trigram”
4. “4-gram”

The power of N-Grams:

● Count up the occurrence of n-grams for 
an estimate of language probability

● “is a” 

N-Grams 101

https://www.cbrinton.net/ECE20875-2020-Spring/W10/ngrams.pdf
https://lena-voita.github.io/nlp_course/language_modeling.html#markov_property

N-Grams “chunk” text

NLP 101



Language Modeling 101

Example: “If I don’t leave now, I’ll be late for ____.”
Q: What’s the relative probability of the blank being filled with class vs lunch?

p(class | If I don’t leave now, I’ll be late for) ≈
p(class | for) * p(for | late) * p(late | be) * … p(I | If) 

p(lunch | If I don’t leave now, I’ll be late for) ≈
p(lunch | for) * p(for | late) * p(late | be) * … p(I | If)

p(class | … ) / p(lunch | …) ≈ p(class | for) / p(lunch | for)

p(wi | wi-1) can be estimated via bigram counts for a large, relevant corpus.
p(class | for) / p(lunch | for) = count(“for class”) / count(“for lunch”)

https://www.cbrinton.net/ECE20875-2020-Spring/W10/ngrams.pdf
https://lena-voita.github.io/nlp_course/language_modeling.html#markov_propertyNLP 101



Bag of Words Vectorization

https://people.eng.unimelb.edu.au/mbouadjenek/papers/wordembed.pdf

● One-hot encoding: corpus vocabulary-length 
vector of all 0’s except one [0,0,0,1,0,0,0,0,...0]

● Term-Doc matrix: Binary vector of documents in 
which the word appears

Characteristics

● Simple, intuitive, fast
● Local context is not preserved
● All terms weighted equally
● Sparse, vocabulary-length vectors

sklearn.feature_exracation.text.CountVectorizer

NLP 101



Co-Occurrence Vectorization

The Counts matrix calculates the co-occurence of words 
within the context window, e.g. the document or sentence.

Characteristics

● Simple, intuitive, fast
● Local context is partially preserved
● All terms weighted equally
● Sparse, vocabulary-length vectors

https://people.eng.unimelb.edu.au/mbouadjenek/papers/wordembed.pdfNLP 101



Naive Vectorization

Drawbacks

● Large and sparse vectors
● Poor use of contextual information within corpus

Desired

● Compact and dense vectors
● Better use of contextual information with corpus



● (1988) Latent Semantic Analysis: term-weight based model
● (2013) Word2Vec: prediction model
● (2014) GLoVe: counts model
● (2018) ELMo: language model-based

Word Embedding Evolution



Latent Semantic Analysis

Deerwester, Scott, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard Harshman.
"Indexing by latent semantic analysis."

Journal of the American Society for Information Science 41, no. 6 (1990): 391-407.



TF-IDF

https://ted-mei.medium.com/demystify-tf-idf-in-indexing-and-ranking-5c3ae88c3fa0
https://sci2lab.github.io/ml_tutorial/tfidf/

Characteristics

● A re-weighting of the term-doc matrix
● As term frequency increases and 

Strength(s)

● Upweights unique terms in a document
● Common usage in open-source search engines 

(Elasticsearch)

Drawback(s)

● Contextual nature of vectorization dilutes as 
document length increases

● Weightings are corpus-dependent
● Sparse, vocabulary-length vectors

sklearn.feature_exracation.text.TfidfVectorizer

The Equation

An Example Vectorization



Latent Semantic Analysis

Frequency Techniques http://lsa.colorado.edu/papers/dp1.LSAintro.pdf

Characteristics

● Applies SVD to the term-doc matrix (or tf-idf matrix)
● U are doc latent factors, V are term latent factors (i.e. 

word vectors)
● Word vectors “borrow” information from other 

documents in which word is not present

Clarifications

● SVD assumes a Gaussian distribution of terms
● Factors aren’t interpretable 
● Adding new documents / terms requires recomputation

SVD

Rank 2 approximation of term-doc matrix 
(UTΣTVT*)



LSA Embeddings

https://nlp.stanford.edu/IR-book/html/htmledition/latent-semantic-indexing-1.html

Achievements over Naive

● Not long or sparse vectors ✅
● Better use of contextual information within corpus ✅

Drawbacks

● SVD is prohibitively expensive with large matrices
though optimizations are available (See Brian’s Netflix talk)

Desired

● Faster method for contextual, dense word vectors



Word2Vec

T Mikolov, I Sutskever, K Chen, GS Corrado, J Dean. Distributed representations of words and phrases and their 
compositionality. NIPS 2013.

https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1310.4546.pdf



Neural Language Models

A Neural Probabilistic Language Model, Bengio et al, 2003

The approach pursues language modeling and produces 
word vectors as a by-product:

https://jalammar.github.io/illustrated-word2vec/
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

What’s the probability of the next 
word being “not”?



Neural Language Models

LM Task: Predict Next Word
i.e. Fill in the blank

LM Model and Prediction

Word Embeddings!



Word2Vec

Improves upon Bengio’s 2003 model by:

● Removing hidden neural network layer and non-linearities (tanh)
● Introduces hierarchical sampling and negative sampling for 

approximation of softmax at Output

CBOW model:

● The distributed representations of context are combined to predict the 
word in the middle

● Produces vectors cluster by syntax (e.g. “cat” and “cats”)

Skip-gram model:

● The distributed representation of the input word is used to predict the 
context

● Produces vectors clustered by semantics (e.g. “cat” and “dog”)
Skip-Gram

CBOW



Skip-Gram Basics

Data

● The training samples are easily 
extracted from the corpus.

● Sliding window default is 5

Training

● Calculate softmax over sampled 
vocabulary

● Backprop the error to update the 
model params (i.e. word vectors)

Data

Training



Word2Vec Embeddings

Achievements over LSA

● Faster algorithms ✅
● Denser vectors ✅

Drawbacks

● Only includes local, windowed context during training and misses out on 
global occurrence statistics

Desired

● Incorporation of global occurrence information as well



GLoVe

J Pennington, R Socher, C Manning.
GLoVe: Global Vectors for Word Representation.

ENMLP 2014.
https://nlp.stanford.edu/pubs/glove.pdf



GLoVe

Characteristics

● GLoVe = GLobal Vectors
● Applies Matrix Factorization to the co-occurrence 

matrix
● Generates two sets of word vectors differing by 

initialization
(Authors average them to produce final vector set)

Intuition

● The dot product of two word vectors should be 
proportional to their co-occurrence count.

● Dot product of orthogonal vectors = 0
The vectors of words that do not co-occur
should be orthogonal

GLoVe: MF on Counts Matrix

https://nlp.stanford.edu/pubs/glove.pdf

LSA: SVD on Term-Doc Matrix



GLoVe vs Word2Vec vs LSA

LSA:

● Vector space does not support analogies
● Weighs all co-occurrences equally
● Better semantics on small datasets1

GLoVe and Skip-Gram Word2Vec:

● Similar performance on analogies
● Are interchangeable in many tasks

https://nlp.stanford.edu/projects/histwords
1https://arxiv.org/abs/1610.01520

Quantifiable Analogies 

Nearest Neighbors On Different 
Historical Corpa



Others

Sense2Vec: incorporate POS and NER information into word vectors (“bat - NOUN”)

Doc2Vec: Word2Vec applied to documents instead of words

fastText: sets out to learn same LM Task but with key differences from word2vec

● Learns vectors for character n-grams and sums to produce word vectors
● Reframes expensive softmax as a binary classification problem. Faster!

https://arxiv.org/abs/1405.4053
https://arxiv.org/abs/1511.06388
https://arxiv.org/abs/1607.04606

https://arxiv.org/abs/1405.4053
https://arxiv.org/abs/1511.06388


GLoVe/Word2Vec Embeddings

Achievements

● Faster algorithms ✅
● Denser vectors ✅
● Use global/local contextual information ✅

Drawbacks

● Word vectors become overloaded with its various senses

Desired

● Disambiguate word sense on runtime context!



ELMo

M Peters, et al.
Deep contextualized word representations

NAACL 2018.
https://arxiv.org/abs/1802.05365



Recurrent Neural Networks for Language Modeling

https://jalammar.github.io/illustrated-bert/

LM Task: Predict Next Word
i.e. Fill in the blank



Bidirectional LSTM

● Views forward and backward context
● Also referred to as biLM in the paper

(bidirectional Language Model)

https://paperswithcode.com/method/elmo

Training and Knowledge 
Incorporation



ELMo Takeaways

1. Encode corpus information in a model rather than in dense vectors
2. Use model to compute vectors at runtime
3. Incorporate vectors into downstream model

But…

What if we could use the information-laden model as the model itself for the task?
Eliminate the downstream model and fine-tune (like an ImageNet model).



Highlighted References

Word2Vec / fastText:

● Pretty pictures: https://jalammar.github.io/illustrated-word2vec/
● A little math: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
● More math: https://ruder.io/word-embeddings-1/index.html

Word Embeddings:

● Overview: https://rbouadjenek.github.io/papers/wordembed_v2.0.pdf

https://jalammar.github.io/illustrated-word2vec/
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
https://ruder.io/word-embeddings-1/index.html
https://rbouadjenek.github.io/papers/wordembed_v2.0.pdf

