
Machine Learning Metamorphosis: Breaking
Models Out from your Local Machine and

Releasing them into the Cloud
Duke Statistical Science Proseminar

February 1st, 2023

Dr. Zack Abzug
Dan Salo

Speakers

Dan Salo
● Data Science Manager
● Engineering degrees from

NC State and Duke
● Professionally: NLP and CV

applications in cloud and social media
● Free time: Basketball, Piano, Cooking

Zack Abzug
● Data Science Manager
● BME @ Duke (BS/MS/PhD)
● Previously: ML for phish/malware

detection + malware forensic analysis
● Currently: AI-based network detection

and response
● Free time: Soccer, Cooking

Outline

● Job Landscape
● Cloud Motivation
● Core Cloud Concepts
● Demo

Job Landscape ● Roles and Responsibilities
● Skills Overlap
● Future Trends

Data Analyst / Business Analyst / Data Scientist

What my friends think I do What my mom thinks I do What society thinks I do

What my boss thinks I do What I think I do What I actually do

Machine Learning Engineer / Data Scientist

What society thinks I do What my mom thinks I do What other engineers think
I do

What research scientists
think I do

What I think I do What I actually do

Roles and Responsibilities

Data Analyst / Business Analyst /
Data Scientist

● Responsibility: Produce actionable
insights from data. Insights are unknown
beforehand.

● Tools: BI dashboards, databases,
statistics, modeling, R/Python, SQL

● Tasks: data exploration, data querying,
feature engineering, model selection,
presenting insights, creating dashboard
and database views, interacting with data
pipelines

Machine Learning Engineer /
Data Scientist

● Responsibility: Produce data-driven
software features. Desired feature is
known beforehand.

● Tools: cloud services, databases,
machine learning, modeling, Python, SQL

● Tasks: write production code, write a
training script, feature engineering, model
selection, run ML experiments, participate
in code reviews, interacting with data
pipelines

Skills Overlap

Databases and Pipelines
(Data) Math and Modeling

(Model)

Software Skills
(Code)

Future Trends

● ⬆ Commoditized frameworks and models
● ⬆ Debugging and tuning for edge cases
● ⬆ Other professionals learning data skills
● ⬆ Business need for dataset curation, model

selection, general problem-solving

Data science professionals with
advanced degrees will debug and tune

standard frameworks to solve problems.

Cloud
Motivation ● Compliance & Auditability

● Data Security & Privacy
● Compute & Data Infrastructure

But first, a point of clarification…

But first, a point of clarification…

● Much of what we’re talking about today isn’t
strictly “cloud-specific”

● We’re mostly talking about “remote
development” more generally

○ Cloud provider, data center, shared cluster, etc.

But first, a point of clarification…

● Much of what we’re talking about today isn’t
strictly “cloud-specific”

● We’re mostly talking about “remote
development” more generally

○ Cloud provider, data center, shared cluster, etc.
○ The “cloud” is really just an abstraction layer

over a collection physical data centers!

But first, a point of clarification…

● Much of what we’re talking about today isn’t
strictly “cloud-specific”

● We’re mostly talking about “remote
development” more generally

○ Cloud provider, data center, shared cluster, etc.
○ The “cloud” is really just an abstraction layer

over a collection physical data centers!
● We’ll point out what pieces are truly

cloud-specific!

Compliance & Auditability

● There are many reasons why it’s
important to have an automated audit log
of how a model was generated and got
pushed to production

Compliance & Auditability

● There are many reasons why it’s
important to have an automated audit log
of how a model was generated and got
pushed to production

● In practice, this is much easier to do when
there is a centralized platform for model
training and deployment!

Compliance & Auditability

● There are many reasons why it’s
important to have an automated audit log
of how a model was generated and got
pushed to production

● In practice, this is much easier to do when
there is a centralized platform for model
training and deployment!

● Cloud providers have “access control”
services that…control access

○ E.g., ensure that models aren’t manually
tampered with

Data Security & Privacy

● Respecting sensitive data should be
sacred

○ Legal reasons
○ Customer agreement reasons
○ Ethical reasons

Data Security & Privacy

● Respecting sensitive data should be
sacred

○ Legal reasons
○ Customer agreement reasons
○ Ethical reasons

● Minimize risk → don’t have sensitive
data on your laptop!

Data Security & Privacy

● Respecting sensitive data should be
sacred

○ Legal reasons
○ Customer agreement reasons
○ Ethical reasons

● Minimize risk → don’t have sensitive
data on your laptop!

● Also ties into auditability: it’s much
easier to implement access controls in
the cloud

Compute & Data Infrastructure

● Freedom to choose the best tools for
the task!

Compute & Data Infrastructure

● Freedom to choose the best tools for
the task!

● Compute questions:
○ How many CPUs?
○ How much memory?
○ GPU? TPU?
○ Spark? Hadoop? MapReduce?

Compute & Data Infrastructure

● Freedom to choose the best tools for
the task!

● Compute questions:
○ How many CPUs?
○ How much memory?
○ GPU? TPU?
○ Spark? Hadoop? MapReduce?

● Data questions:
○ What is your data volume?
○ SQL? NoSQL?
○ Flat storage?
○ ElasticSearch?

Core Cloud
Concepts ● Production ML Overview

● Training & Versioning
● Containerization
● Deployment & Monitoring

Production ML Overview

https://ibm.github.io/data-science-best-practices/versioning.html

Trained
Model

Iris Dataset 🌼

Training Code

Model Evaluation

Local Deploy

Question: How is production ML
in the cloud different than this
workflow? How is it the same?

Production ML Overview — The Cloud

Automate and Scale Your Local Workflow

● Feature Engineering
● Training Experiments on batch data
● Hyperparameter Tuning
● Model Evaluation
● Model Selection

Address New Challenges

● Real-time training
● Changing data schema and datasets
● Tracking multiple re-trainings
● Monitoring models for re-training
● Sampling from production data for labeling
● Tracking labels from multiple labelers

Training & Versioning

https://ibm.github.io/data-science-best-practices/versioning.html

3 basic ingredients for ML training:

Training Dataset
Validation Dataset

Test Dataset
Out-of-time Test Dataset

Model Architecture
Pre-trained weights

Training Script
Evaluation Script

Training & Versioning

Training Run
#1

Training Run
#2

Training Run
#3

● Data-Model-Code snapshots enable auditable
training through reproducibility

● MLFlow (or others) can track experiments and
metrics

● Versioning allows incoming predictions to be
tagged and tied to a model

Training & Versioning

Training & Versioning

https://awsmachinelearning.dev/machine-learning-workflow-aws-sagemaker/

EC2 Instance
(Cloud Server)

SageMaker Run
Script

S3 Bucket
(Cloud Storage) After executing the SageMaker Run

Script:

1. EC2 Instance starts up
2. Training script loaded onto

instance
3. Datasets downloaded to

instance from s3
4. Training script runs
5. Model saved to instance
6. Model uploaded

Training Script

Training & Versioning

Example SageMaker Run Script, pointing to your_training_script.py:

Containerization

● Define/control the environment code executes in
independent of the underlying hardware

Containerization

● Define/control the environment code executes in
independent of the underlying hardware

● Containerization != Docker (at least in theory)

Containerization

● Define/control the environment code executes in
independent of the underlying hardware

● Containerization != Docker (at least in theory)
● Docker Image: a static software artifact on disk

○ Operating system
○ Installed packages
○ Environment variables
○ Your code
○ An “entrypoint”

Containerization

● Define/control the environment code executes in
independent of the underlying hardware

● Containerization != Docker (at least in theory)
● Docker Image: a static software artifact on disk

○ Operating system
○ Installed packages
○ Environment variables
○ Your code
○ An “entrypoint”

● Docker Container: a dynamic instance of a
running image (sort of like a VM)

○ Executes entrypoint
○ Optionally: interactive shell

Containerization

Deployment & Monitoring

Model
def predict(input):
 return self.model.predict(input)

Deployment & Monitoring

REST API

Model
def predict(input):
 return self.model.predict(input)

@app.post(“/predict”)
def predict(input):
 return MODEL.predict(input)

Deployment & Monitoring

Docker Container

REST API

Model
def predict(input):
 return self.model.predict(input)

@app.post(“/predict”)
def predict(input):
 return MODEL.predict(input)

run your app on a
specific port using

an application
serving framework

Deployment & Monitoring

Cloud Compute Instance

Docker Container

expose
that port REST API

Model
def predict(input):
 return self.model.predict(input)

@app.post(“/predict”)
def predict(input):
 return MODEL.predict(input)

run your app on a
specific port using

an application
serving framework

Deployment & Monitoring

Cloud Compute Instance

curl \
 -X POST \
 -H “Content-Type: application/json” \
 -d ‘<input data as json>’ \
 http://address:port/predict

Client

Docker Container

expose
that port REST API

Model
def predict(input):
 return self.model.predict(input)

@app.post(“/predict”)
def predict(input):
 return MODEL.predict(input)

run your app on a
specific port using

an application
serving framework

Deployment & Monitoring

● How do we make sure our model is performing as expected?
● How do we know when it’s time to retrain our model?
● Things you may want to monitor or log:

○ Prediction latency / application latency
○ Distribution of predictions
○ Distribution of input features
○ Random sample of raw input data
○ Application failures

Deployment & Monitoring

● How do we make sure our model is performing as expected?
● How do we know when it’s time to retrain our model?
● Things you may want to monitor or log:

○ Prediction latency / application latency
○ Distribution of predictions
○ Distribution of input features
○ Random sample of raw input data
○ Application failures

Best practice: don’t log sensitive data!
Any data that may be sensitive should

be written to a more secure (cloud)
data source.

Deployment & Monitoring

● Cloud providers have specialized “model
hosting” services that aim to reduce
boilerplate and build-in monitoring capabilities

Deployment & Monitoring

● Cloud providers have specialized “model
hosting” services that aim to reduce
boilerplate and build-in monitoring capabilities

○ E.g., AWS SageMaker Endpoints require an
inference.py file with two functions:

■ model_fn : load your model
■ transform_fn : receive an input, make a

prediction, return output

Deployment & Monitoring

● Cloud providers have specialized “model
hosting” services that aim to reduce
boilerplate and build-in monitoring capabilities

○ E.g., AWS SageMaker Endpoints require an
inference.py file with two functions:

■ model_fn : load your model
■ transform_fn : receive an input, make a

prediction, return output
■ All other layers (REST API, serving framework,

Docker, Compute) are abstracted away
■ Plays especially nicely with SageMaker

Training

Deployment & Monitoring

● Cloud providers have specialized “model
hosting” services that aim to reduce
boilerplate and build-in monitoring capabilities

○ E.g., AWS SageMaker Endpoints require an
inference.py file with two functions:

■ model_fn : load your model
■ transform_fn : receive an input, make a

prediction, return output
■ All other layers (REST API, serving framework,

Docker, Compute) are abstracted away
■ Plays especially nicely with SageMaker

Training

Demos ● Remote Jupyter
● Docker 101

Thank you!
Any questions?

