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Machine Learning Engineer / Data Scientist

What society thinks I do What my mom thinks I do What other engineers think 
I do

What research scientists 
think I do

What I think I do What I actually do



Roles and Responsibilities

Data Analyst / Business Analyst / 
Data Scientist

● Responsibility: Produce actionable 
insights from data. Insights are unknown 
beforehand.

● Tools: BI dashboards, databases, 
statistics, modeling, R/Python, SQL

● Tasks: data exploration, data querying, 
feature engineering, model selection, 
presenting insights, creating dashboard 
and database views, interacting with data 
pipelines

Machine Learning Engineer / 
Data Scientist

● Responsibility: Produce data-driven 
software features. Desired feature is 
known beforehand.

● Tools: cloud services, databases, 
machine learning, modeling, Python, SQL

● Tasks: write production code, write a 
training script, feature engineering, model 
selection, run ML experiments, participate 
in code reviews, interacting with data 
pipelines



Skills Overlap

Databases and Pipelines
(Data) Math and Modeling

(Model)

Software Skills
(Code)



Future Trends

● ⬆ Commoditized frameworks and models
● ⬆ Debugging and tuning for edge cases
● ⬆ Other professionals learning data skills
● ⬆ Business need for dataset curation, model 

selection, general problem-solving

Data science professionals with 
advanced degrees will debug and tune 

standard frameworks to solve problems.
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Motivation ● Compliance & Auditability

● Data Security & Privacy
● Compute & Data Infrastructure
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But first, a point of clarification…

● Much of what we’re talking about today isn’t 
strictly “cloud-specific”

● We’re mostly talking about “remote 
development” more generally

○ Cloud provider, data center, shared cluster, etc.
○ The “cloud” is really just an abstraction layer 

over a collection physical data centers!
● We’ll point out what pieces are truly 

cloud-specific!
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Compliance & Auditability

● There are many reasons why it’s 
important to have an automated audit log 
of how a model was generated and got 
pushed to production

● In practice, this is much easier to do when 
there is a centralized platform for model 
training and deployment!

● Cloud providers have “access control” 
services that…control access

○ E.g., ensure that models aren’t manually 
tampered with
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Data Security & Privacy

● Respecting sensitive data should be 
sacred

○ Legal reasons
○ Customer agreement reasons
○ Ethical reasons

● Minimize risk → don’t have sensitive 
data on your laptop!

● Also ties into auditability: it’s much 
easier to implement access controls in 
the cloud



Compute & Data Infrastructure

● Freedom to choose the best tools for 
the task!



Compute & Data Infrastructure

● Freedom to choose the best tools for 
the task!

● Compute questions:
○ How many CPUs?
○ How much memory?
○ GPU? TPU?
○ Spark? Hadoop? MapReduce?



Compute & Data Infrastructure

● Freedom to choose the best tools for 
the task!

● Compute questions:
○ How many CPUs?
○ How much memory?
○ GPU? TPU?
○ Spark? Hadoop? MapReduce?

● Data questions:
○ What is your data volume?
○ SQL? NoSQL?
○ Flat storage?
○ ElasticSearch?



Core Cloud 
Concepts ● Production ML Overview

● Training & Versioning
● Containerization
● Deployment & Monitoring



Production ML Overview

https://ibm.github.io/data-science-best-practices/versioning.html

Trained
Model

Iris Dataset 🌼 

Training Code

Model Evaluation

Local Deploy

Question: How is production ML 
in the cloud different than this 
workflow? How is it the same?



Production ML Overview — The Cloud

Automate and Scale Your Local Workflow 

● Feature Engineering
● Training Experiments on batch data
● Hyperparameter Tuning
● Model Evaluation
● Model Selection

Address New Challenges

● Real-time training
● Changing data schema and datasets
● Tracking multiple re-trainings
● Monitoring models for re-training
● Sampling from production data for labeling
● Tracking labels from multiple labelers



Training & Versioning

https://ibm.github.io/data-science-best-practices/versioning.html

3 basic ingredients for ML training:

Training Dataset
Validation Dataset

Test Dataset
Out-of-time Test Dataset

Model Architecture
Pre-trained weights

Training Script
Evaluation Script



Training & Versioning

Training Run
#1

Training Run
#2

Training Run
#3

● Data-Model-Code snapshots enable auditable 
training through reproducibility

● MLFlow (or others) can track experiments and 
metrics

● Versioning allows incoming predictions to be 
tagged and tied to a model



Training & Versioning



Training & Versioning

https://awsmachinelearning.dev/machine-learning-workflow-aws-sagemaker/

EC2 Instance
(Cloud Server)

SageMaker Run 
Script

S3 Bucket
(Cloud Storage) After executing the SageMaker Run 

Script:

1. EC2 Instance starts up
2. Training script loaded onto 

instance
3. Datasets downloaded to 

instance from s3
4. Training script runs
5. Model saved to instance
6. Model uploaded

Training Script



Training & Versioning

Example SageMaker Run Script, pointing to your_training_script.py:
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Containerization

● Define/control the environment code executes in 
independent of the underlying hardware

● Containerization != Docker (at least in theory)
● Docker Image: a static software artifact on disk

○ Operating system
○ Installed packages
○ Environment variables
○ Your code
○ An “entrypoint”

● Docker Container: a dynamic instance of a 
running image (sort of like a VM)

○ Executes entrypoint
○ Optionally: interactive shell



Containerization



Deployment & Monitoring

Model
def predict(input):
    return self.model.predict(input)
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Deployment & Monitoring

Cloud Compute Instance

Docker Container
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Deployment & Monitoring

Cloud Compute Instance

curl \ 
    -X POST \
    -H “Content-Type: application/json” \
    -d ‘<input data as json>’ \
    http://address:port/predict

Client

Docker Container

expose 
that port REST API

Model
def predict(input):
    return self.model.predict(input)

@app.post(“/predict”)
def predict(input):
    return MODEL.predict(input)

run your app on a 
specific port using 

an application 
serving framework
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● How do we make sure our model is performing as expected?
● How do we know when it’s time to retrain our model?
● Things you may want to monitor or log:

○ Prediction latency / application latency
○ Distribution of predictions
○ Distribution of input features
○ Random sample of raw input data
○ Application failures



Deployment & Monitoring

● How do we make sure our model is performing as expected?
● How do we know when it’s time to retrain our model?
● Things you may want to monitor or log:

○ Prediction latency / application latency
○ Distribution of predictions
○ Distribution of input features
○ Random sample of raw input data
○ Application failures

Best practice: don’t log sensitive data! 
Any data that may be sensitive should 

be written to a more secure (cloud) 
data source.
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Deployment & Monitoring

● Cloud providers have specialized “model 
hosting” services that aim to reduce 
boilerplate and build-in monitoring capabilities

○ E.g., AWS SageMaker Endpoints require an 
inference.py  file with two functions:

■ model_fn : load your model
■ transform_fn : receive an input, make a 

prediction, return output
■ All other layers (REST API, serving framework, 

Docker, Compute) are abstracted away
■ Plays especially nicely with SageMaker 

Training



Demos ● Remote Jupyter
● Docker 101



Thank you!
Any questions?


