
Introduction N-Grams Word2Vec RNN CNN

Was That Even English?
Language Modeling for QA

Dan Salo

Duke University

June 22nd, 2017

Introduction N-Grams Word2Vec RNN CNN

Outline

Preliminaries
Language Model Types

• N-Grams

• (Word2Vec)

• Recurrent Neural Network

• Convolutional Neural Network

State-of-the-Art

Introduction N-Grams Word2Vec RNN CNN

Go Humans Go

Figure: Humans 1, Computers 0

Introduction N-Grams Word2Vec RNN CNN

Motivation

Figure: With what probability is this
document written in correct English?

• Contextual Synonyms
p(high crowd tonight) <
p(large crowd tonight)

• Contextual Spelling
p(principal scorer) <
p(principle scorer)

• Grammar Checking
p(He play well) <
p(He plays well)

Introduction N-Grams Word2Vec RNN CNN

Bag of Words

Word Count
the 10

ball 7

said 5

court 4

minutes 2

.

minuets 1

minuts 1

Curry 1

Game (5) 1

Figure: Frequency of words
in document

Advantages:

• Subject Matter Information (ball,
court)

• Dictionary Methods (minuts)

Limitations:

• No Contextual Information!

Introduction N-Grams Word2Vec RNN CNN

Chain Rule

Sentence probability = joint probability of word sequence:

S = (w1, w2, w3, . . . , wn)⇒ p(S) = p(w1, w2, w3, . . . , wn)

Joint probability = conditional × marginal probability:

p(w1, w2, w3, . . . , wn) = p(w1)× p(w2|w1)× p(w3|w1, w2) . . .

× p(wn|w1, w2, . . . wn−1)

=
∏
i

p(wi|w1, w2, . . . , wi−1)

Approximations to true sentence probability:

True Single, Bag of Words Double, Markov Three

p(S) p(wi) p(wi|wi−1) p(wi|wi−2, wi−1)

Introduction N-Grams Word2Vec RNN CNN

Context Example

As the player shot the A with two B to go in the
game, the crowd C in amazement.

A. ball, gala, basketball (Synonyms)

B. minutes, minuets, minutea (Spelling)

C. stares, started, stared (Grammar)

Probabilities:

A. p(ball|As, the, player, shot, the)

B. p(minutes|As, the, player, shot, the, ball, with two)

C. p(stared|As, the, player, shot, the, ball, with two,
minutes, to go, in, the, game, ”,” ,the, crowd)

Introduction N-Grams Word2Vec RNN CNN

N-Grams:
Language Modeling with Discrete Phrases

Introduction N-Grams Word2Vec RNN CNN

N-Grams

Idea: word probability based on phrase frequency in large corpus:

p(wi|wi−1) =
p(wi, wi−1)

p(wi)
≈ count(wi−1, wi)

count(wi−1)

Unigram: p(ball) count(”ball”)

Bigram: p(ball | the) count(”the ball”)
count(”the”)

Trigram: p(ball | shot, the) count(”shot the ball”)
count(”shot the”)

4-gram: p(ball | Curry, shot, the) count(”player shot the ball”)
count(”player shot the”)

5-gram: p(ball | the, player, shot, the)
count(”player shot the ball”)
count(”the player shot the”)

Questions:

• What about unseen phrases?

• How do we combine all these probabilities?

Introduction N-Grams Word2Vec RNN CNN

Smoothing for Unobserved N-Grams

Problem: p(stared|the, crowd) = 0 because ”the crowd stared”
was not found in the training corpus.

Figure: Steal from the rich and give to the poor.

Idea: Borrow mass from observed n-grams, p(watched|the, crowd)

• Add 1 or a constant to all counts (LaPlace)

• Take mass from n-grams observed 10 times and assign mass
to n-grams observed 9 times, etc. (Good-Turing)

Introduction N-Grams Word2Vec RNN CNN

Interpolation and Backoff Combine N-Grams

Interpolation: Linear Model of N-grams with learned constants.
Works better on smaller datasets.

p(stared|the, crowd) ≈ λ3 × p(stared|the, crowd)

+ λ2 × p(stared|crowd) + λ1 × p(stared)

Backoff: Use highest N-gram possible. If not above threshold, try
a lower order n-gram. Works better on larger datasets.

p(stared|the, crowd) =


p(stared|the, crowd), if count > ktrigram

p(stared|crowd), if count > kbigram

p(stared) otherwise

Introduction N-Grams Word2Vec RNN CNN

Google N-Gram Dataset

4-Gram Count

serve as the incoming 92

serve as the incubator 99

serve as the independent 794

serve as the index 223

serve as the indication 72

serve as the indicator 120

serve as the indicators 45

serve as the indispensable 111

Figure: Sampling from Google N-Grams

• Released in 2006 as open
source

• Compiled from 1T words,
13M unique words

• Comphrensive and still
widely used (i.e.
LangTool)

Introduction N-Grams Word2Vec RNN CNN

N-Grams: Limited Context

As the player shot the A with two B to go in the
game, the crowd C in amazement.

A. ball, gala, basketball (Synonyms)

B. minutes, minuets, minutea (Spelling)

C. stares, started, stared (Grammar)

Probabilities (from Google N-Grams):

A. p(ball|shot, the)
p(gala|shot, the) = 33.7⇒ ball

B. p(minutes|ball, with two)
p(minuets|ball, with two) +

p(go|minutes, to)
p(go|minuets, to) = 30.7⇒ minutes

C. p(stared|the, crowd)
p(stares|the, crowd) ≈ 1⇒ ???

Introduction N-Grams Word2Vec RNN CNN

Word2Vec:
Continous Word Representations with Semantic Meaning

Introduction N-Grams Word2Vec RNN CNN

One-Hot Word Representation

Word One-Hot
the [1000 . . . 00]

ball [0100 . . . 00]

said [0010 . . . 00]

court [0001 . . . 00]

.

Curry [0000 . . . 10]

minuets [0000 . . . 01]

Figure: ’ball’ and ’said’ are
closest in distance but not
meaning.

Advantages:

• Easy and Fast

Limitations:

• No Semantic Information!

• Distance carries no meaning.

• Adding new words is difficult.

• Binary, unsmooth loss.

Use Neural Networks to Learn a Continuous Representation!

Introduction N-Grams Word2Vec RNN CNN

Neural Networks: What?

Figure: One Layer of a Neural
Network

Steps:

• Multiply inputs and
weights (xj ∗ wnj)
and add results.

• Apply non-linearity
(ReLU: if < 0,= 0).

Training:

• Compute loss at
network top

• ”Backpropagate” to
network bottom and
update weights.

Introduction N-Grams Word2Vec RNN CNN

Neural Networks: Why?

• Biologically-Inspired

• Matrix Multiplication or Dimensionality Reduction

• Data-Driven Features (Not Handcrafted)

• Now? More data. More computational power.

• Universal Function Approximator a.k.a. the Black Box:

Figure: But Can It Be Trusted?

Introduction N-Grams Word2Vec RNN CNN

Word2Vec Model

Figure: Word2Vec Model:
Neural Network with one
Hidden Layer

Advantages:

• Continuous word representation

• Compound words become single
vector

• Vector similarity (distance) ⇒
Contextual similarity (distance)

Limitations:

• Unknown words

• More computation necessary

Introduction N-Grams Word2Vec RNN CNN

Example Word2Vec Embedding

Figure: Clustered Emedding Space from Home Depot Kaggle Competition

Introduction N-Grams Word2Vec RNN CNN

Recurrent Neural Networks:
Language Modeling to Infinity and Beyond

Introduction N-Grams Word2Vec RNN CNN

Recurrent Neural Network

Figure: Simple RNN architecture unrolled over time

Figure: RNNs theoretically can rely on infinite context

Introduction N-Grams Word2Vec RNN CNN

RNNs: Expanded Context

As the player shot the ball with two minutes to go in
the game, the crowd A in amazement.

A. stares, started, stared (Grammar)

Probabilities (Regularized RNN with Word2Vec):

A. p(stared|shot, the, ball, with, two, minutes, to, go, in, the, game, the, crowd)
p(stares|shot, the, ball, with, two, minutes, to, go, in, the, game, the, crowd)
= 1⇒ ???

What Happened?
”stared” and ”stares” are lemmatized to the same root: ”stare”.

Introduction N-Grams Word2Vec RNN CNN

Convolutional Neural Networks:
Learning N-Gram Filtersex

Introduction N-Grams Word2Vec RNN CNN

1D Convolution with Word2Vec

Figure: 1D Convolution with a
(lh=3) filter on a 6-word Sentence.

y[n] = x[n] ∗ h[n]

=

∞∑
k=−∞

x[k]× h[n− k]

=

lh∑
k=0

x[k]× h[n− k]

• x is the sentence, h is the
filter, lh is the filter length,
y is the output.

• h is like a ’phrase stencil’ or
’N-gram mask’

• y has larger value when
convolved with h’s phrase

Introduction N-Grams Word2Vec RNN CNN

Convolutional Neural Network (CNN)

Figure: Training a CNN for Sentiment Analysis (Classification)

Introduction N-Grams Word2Vec RNN CNN

Google’s State-of-the-Art LM

Figure: Char-CNN-LSTM Model (c)

Introduction N-Grams Word2Vec RNN CNN

Google’s State-of-the-Art LM

Figure: Quanitative Comparisons on 1B Word Benchmark

Takeaways

Main Points:

• Language model outputs must be interpreted as ratios.

• N-Grams are good for quick, localized comparison (synonyms).

• Word2Vec provides a semantic representation of words.

• Neural models are better for text with longer dependencies
(sentences, documents).

WS Applications:

• Contextual Synonyms with N-Grams

• Ruled-Based Context Checking with N-Grams

• Sort Sample Sentences with Neural Language Model for User
QA

Resources

N-Grams
• http://www.statmt.org/book/slides/07-language-models.pdf

• https://web.stanford.edu/class/cs124/lec/languagemodeling.pdf

• https://research.googleblog.com/2006/08/all-our-n-gram-are-
belong-to-you.html

Word2Vec
• http://blog.kaggle.com/2016/05/18/home-depot-product-search-

relevance-winners-interview-1st-place-alex-andreas-nurlan/

• https://www.analyticsvidhya.com/blog/2017/05/gpus-necessary-
for-deep-learning/

RNN
• http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

• https://www.linkedin.com/pulse/what-i-learned-from-deep-learning-
summer-school-2016-hamid-palangi

CNN
• https://arxiv.org/pdf/1508.06615.pdf

• https://arxiv.org/pdf/1509.01626.pdf

	Introduction
	Outline
	Motivation
	Preliminaries

	N-Grams
	Model
	Real Implementation

	Word2Vec
	Background
	Model

	RNN
	Model
	Example

	CNN
	Background
	Model
	State-of-the-Art

	Appendix

