Introduction	N-Grams	Word2Vec	RNN	CNN

Was That Even English? Language Modeling for QA

Dan Salo

Duke University

June 22nd, 2017

Introduction	N-Grams	Word2Vec	RNN	CNN
00000				
Outline				

Preliminaries Language Model Types

- N-Grams
- (Word2Vec)
- Recurrent Neural Network
- Convolutional Neural Network

State-of-the-Art

Aoccdrnig to a rseearch sduty at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be in the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey Iteter by istlef, but the wrod as a wlohe.

Figure: Humans 1, Computers 0

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

Introduction	N-Grams	Word2Vec	RNN	CNN
00000				
Motivation				

Figure: With what probability is this document written in correct English?

- Contextual Synonyms p(high crowd tonight) < p(large crowd tonight)
- Contextual Spelling p(principal scorer) < p(principle scorer)
- Grammar Checking p(He play well) < p(He plays well)

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

Introduction	N-Grams	Word2Vec	RNN	CNN
000000				
Bag of Words				

Word	Count
the	10
ball	7
said	5
court	4
minutes	2
minuets	1
minuts	1
Curry	1
Game (5)	1

o

Figure: Frequency of words in document

Advantages:

• Subject Matter Information (ball, court)

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

• Dictionary Methods (minuts)

Limitations:

• No Contextual Information!

 Introduction
 N-Grams
 Word2Vec
 RNN
 CNN

 00000
 00000
 00000
 00
 00000
 00000

Sentence probability = joint probability of word sequence:

$$S = (w_1, w_2, w_3, \dots, w_n) \Rightarrow p(S) = p(w_1, w_2, w_3, \dots, w_n)$$

Joint probability = conditional \times marginal probability:

$$p(w_1, w_2, w_3, \dots, w_n) = p(w_1) \times p(w_2 | w_1) \times p(w_3 | w_1, w_2) \dots \\ \times p(w_n | w_1, w_2, \dots, w_{n-1}) \\ = \prod_i p(w_i | w_1, w_2, \dots, w_{i-1})$$

Approximations to true sentence probability:

True	Single, Bag of Words	Double, Markov	Three
p(S)	$p(w_i)$	$p(w_i w_{i-1})$	$p(w_i w_{i-2}, w_{i-1})$

シック・単則 (川田) (川田) (山) (山)

Introduction	N-Grams	Word2Vec	RNN	CNN
	00000	00000	oo	0000
Context Exam	ple			

As the player shot the $_A_$ with two $_B_$ to go in the game, the crowd $_C_$ in amazement.

- A. ball, gala, basketball (Synonyms)
- B. minutes, minutes, minutea (Spelling)
- C. stares, started, stared (Grammar)

Probabilities:

- A. p(ball|As, the, player, shot, the)
- B. p(minutes|As, the, player, shot, the, ball, with two)
- C. *p*(stared|As, the, player, **shot**, the, ball, with two, minutes, to go, in, the, game, "," ,the, crowd)

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Introduction	N-Grams	Word2Vec	RNN	CNN

N-Grams: Language Modeling with Discrete Phrases

・ロト < 団ト < 三ト < 三ト < 三日 < つへの

Introduction	N-Grams	Word2Vec	RNN	CNN
000000	●0000	00000	oo	0000
N-Grams				

Idea: word probability based on phrase frequency in large corpus:

$$p(w_i|w_{i-1}) = \frac{p(w_i, w_{i-1})}{p(w_i)} \approx \frac{\mathsf{count}(w_{i-1}, w_i)}{\mathsf{count}(w_{i-1})}$$

Unigram:	p(ball)	count("ball")
Bigram:	p(ball the)	count(" the ball") count(" the")
Trigram:	p(ball shot, the)	count("shot the ball") count("shot the")
4-gram:	p(ball Curry, shot, the)	count("player shot the ball") count("player shot the")
5-gram:	p(ball the, player, shot, the)	count("player shot the ball") count("the player shot the")

Questions:

- What about unseen phrases?
- How do we combine all these probabilities?

Introduction OOOOOO No OOOO No OOOO NO OOOO NO OOOO Smoothing for Unobserved N-Grams

Problem: p(stared|the, crowd) = 0 because "the crowd stared" was not found in the training corpus.

Figure: Steal from the rich and give to the poor.

Idea: Borrow mass from observed n-grams, p(watched|the, crowd)

- Add 1 or a constant to all counts (LaPlace)
- Take mass from n-grams observed 10 times and assign mass to n-grams observed 9 times, etc. (Good-Turing)

Interpolation and Backoff Combine N-Grams

Interpolation: Linear Model of N-grams with learned constants. Works better on smaller datasets.

$$\begin{split} p(\mathsf{stared}|\mathsf{the, crowd}) &\approx \lambda_3 \times p(\mathsf{stared}|\mathsf{the, crowd}) \\ &+ \lambda_2 \times p(\mathsf{stared}|\mathsf{crowd}) + \lambda_1 \times p(\mathsf{stared}) \end{split}$$

Backoff: Use highest N-gram possible. If not above threshold, try a lower order n-gram. Works better on larger datasets.

$$p(\mathsf{stared}|\mathsf{the, crowd}) = \begin{cases} p(\mathsf{stared}|\mathsf{the, crowd}), & \text{if count} > k_{\mathsf{trigram}} \\ p(\mathsf{stared}|\mathsf{crowd}), & \text{if count} > k_{\mathsf{bigram}} \\ p(\mathsf{stared}) & \text{otherwise} \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Introduction
 N-Grams
 Word2Vec
 RNN
 CNN

 000000
 00000
 00000
 00000
 00000

4-Gram	Count
serve as the incoming	92
serve as the incubator	99
serve as the independent	794
serve as the index	223
serve as the indication	72
serve as the indicator	120
serve as the indicators	45
serve as the indispensable	111

Figure: Sampling from Google N-Grams

- Released in 2006 as open source
- Compiled from 1T words, 13M unique words

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

 Comphrensive and still widely used (i.e. LangTool)
 Introduction
 N-Grams
 Word2Vec
 RNN
 CNN

 000000
 00000
 00000
 00000
 00000

As the player shot the $_A_$ with two $_B_$ to go in the game, the crowd $_C_$ in amazement.

- A. ball, gala, basketball (Synonyms)
- B. minutes, minuets, minutea (Spelling)
- C. stares, started, stared (Grammar)

Probabilities (from Google N-Grams):

A. $\frac{p(\text{ball}|\text{shot, the})}{p(\text{gala}|\text{shot, the})} = 33.7 \Rightarrow \text{ball}$ B. $\frac{p(\text{minutes}|\text{ball, with two})}{p(\text{minutes}|\text{ball, with two})} + \frac{p(\text{go}|\text{minutes, to})}{p(\text{go}|\text{minutes, to})} = 30.7 \Rightarrow \text{minutes}$

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

$$\label{eq:C.prod} \text{C.} ~ ~ \frac{p(\text{stared}|\text{the, crowd})}{p(\text{stares}|\text{the, crowd})} \approx 1 \Rightarrow ~ \ref{eq:C.prod}$$

Introduction	N-Grams	Word2Vec	RNN	CNN

Word2Vec: Continous Word Representations with Semantic Meaning

◆□▶ ◆□▶ ◆目▶ ◆目■ のへで

\bigcirc	Designation			
000000	00000	••••	00	0000
Introduction	N-Grams	Word2Vec	RNN	CNN

One-Hot Word Representation

Word	One-Hot
the	$[1000\dots00]$
ball	$[0100\dots00]$
said	[001000]
court	[000100]
Curry	[000010]
minuets	[000001]

Figure: 'ball' and 'said' are closest in distance but not meaning.

Advantages:

• Easy and Fast

Limitations:

- No Semantic Information!
- Distance carries no meaning.
- Adding new words is difficult.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

• Binary, unsmooth loss.

Use Neural Networks to Learn a Continuous Representation!

Figure: One Layer of a Neural Network

Steps:

- Multiply inputs and weights $(x_j * w_{nj})$ and add results.
- Apply non-linearity (ReLU: if < 0, = 0).

Training:

- Compute loss at network top
- "Backpropagate" to network bottom and update weights.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Introduction	N-Grams	Word2Vec	RNN	CNN
000000	00000	oo●oo	oo	0000
Neural Networ	ks: Why?			

- Biologically-Inspired
- Matrix Multiplication or Dimensionality Reduction
- Data-Driven Features (Not Handcrafted)
- Now? More data. More computational power.
- Universal Function Approximator a.k.a. the Black Box:

Figure: But Can It Be Trusted?

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Figure: Word2Vec Model: Neural Network with one Hidden Layer Advantages:

- Continuous word representation
- Compound words become single vector
- Vector similarity (distance) \Rightarrow Contextual similarity (distance)

Limitations:

- Unknown words
- More computation necessary

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Introduction	N-Grams	Word2Vec	RNN	CNN
		00000		

Example Word2Vec Embedding

Figure: Clustered Emedding Space from Home Depot Kaggle Competition

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Introduction	N-Grams	Word2Vec	RNN	CNN

Recurrent Neural Networks: Language Modeling to Infinity and Beyond

	. N.I.	L N L .	1		
				00	
Introduction		N-Grams	Word2Vec	RNN	CNN

Recurrent Neural Network

Figure: Simple RNN architecture unrolled over time

p(the, cat, is, eating)

Figure: RNNs theoretically can rely on infinite context

OCOCOCO	N-Grams 00000	00000	RININ ○●	0000
RNNs: Expand	ded Context			

As the player shot the <u>ball</u> with two <u>minutes</u> to go in the game, the crowd <u>A</u> in amazement.

A. stares, started, stared (Grammar)

Probabilities (Regularized RNN with Word2Vec):

A. $\frac{p(\text{stared}|\text{shot, the, ball, with, two, minutes, to, go, in, the, game, the, crowd})}{p(\text{stares}|\text{shot, the, ball, with, two, minutes, to, go, in, the, game, the, crowd})} = 1 \Rightarrow ???$

What Happened?

"stared" and "stares" are lemmatized to the same root: "stare".

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	N-Grams	Word2Vec	RNN	CNN

Convolutional Neural Networks: Learning N-Gram Filtersex

Introduction	N-Grams	Word2Vec	RNN	CNN
000000	00000	00000	oo	●000
1D Convolution	with Word2	/ec		

Figure: 1D Convolution with a $(l_h=3)$ filter on a 6-word Sentence.

$$y[n] = x[n] * h[n]$$
$$= \sum_{k=-\infty}^{\infty} x[k] \times h[n-k]$$
$$= \sum_{k=0}^{l_h} x[k] \times h[n-k]$$

- x is the sentence, h is the filter, l_h is the filter length, y is the output.
- *h* is like a 'phrase stencil' or 'N-gram mask'
- y has larger value when convolved with h's phrase

 Introduction
 N-Grams
 Word2Vec
 RNN
 CNN

 000000
 00000
 00
 00000
 00

Convolutional Neural Network (CNN)

Figure: Training a CNN for Sentiment Analysis (Classification)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへ⊙

Introduction N-Grams Word2Vec RNN CNN 00000 0000 0000 0000 0000

Google's State-of-the-Art LM

Figure: Char-CNN-LSTM Model (c)

Introduction	N-Grams	Word2Vec	RNN	CNN
000000		00000	00	0000

Google's State-of-the-Art LM

Model	TEST PERPLEXITY	NUMBER OF PARAMS [BILLIONS]
SIGMOID-RNN-2048 (JI ET AL., 2015A)	68.3	4.1
INTERPOLATED KN 5-GRAM, 1.1B N-GRAMS (CHELBA ET AL., 2013)	67.6	1.76
SPARSE NON-NEGATIVE MATRIX LM (SHAZEER ET AL., 2015)	52.9	33
RNN-1024 + MAXENT 9-GRAM FEATURES (CHELBA ET AL., 2013)	51.3	20
LSTM-512-512	54.1	0.82
LSTM-1024-512	48.2	0.82
LSTM-2048-512	43.7	0.83
LSTM-8192-2048 (No DROPOUT)	37.9	3.3
LSTM-8192-2048 (50% DROPOUT)	32.2	3.3
2-LAYER LSTM-8192-1024 (BIG LSTM)	30.6	1.8
BIG LSTM+CNN INPUTS	30.0	1.04
DIG LOTH CONTRACTOR CONTRACTOR	20.9	0.20
BIG LSIM+CNN INPUTS + CNN SOFTMAX	39.8	0.29
BIG LSTM+CNN INPUTS + CNN SOFTMAX + 128-DIM CORRECTION	35.8	0.39
BIG LSTM+CNN INPUTS + CHAR LSTM PREDICTIONS	47.9	0.23

Figure: Quanitative Comparisons on 1B Word Benchmark

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

Main Points:

- Language model outputs must be interpreted as ratios.
- N-Grams are good for quick, localized comparison (synonyms).
- Word2Vec provides a semantic representation of words.
- Neural models are better for text with longer dependencies (sentences, documents).

WS Applications:

- Contextual Synonyms with N-Grams
- Ruled-Based Context Checking with N-Grams
- Sort Sample Sentences with Neural Language Model for User QA

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Resources

N-Grams

- http://www.statmt.org/book/slides/07-language-models.pdf
- $\bullet \ https://web.stanford.edu/class/cs124/lec/languagemodeling.pdf$
- https://research.googleblog.com/2006/08/all-our-n-gram-arebelong-to-you.html

Word2Vec

- http://blog.kaggle.com/2016/05/18/home-depot-product-search-relevance-winners-interview-1st-place-alex-andreas-nurlan/
- https://www.analyticsvidhya.com/blog/2017/05/gpus-necessaryfor-deep-learning/

RNN

- http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
- https://www.linkedin.com/pulse/what-i-learned-from-deep-learningsummer-school-2016-hamid-palangi

CNN

- https://arxiv.org/pdf/1508.06615.pdf
- https://arxiv.org/pdf/1509.01626.pdf